MINNESOTA TECH FOR SUCCESS

Week 16-18: Database Management and Troubleshooting

3/13/2024

0

WEEK 16-18: DATABASE MANAGEMENT & TROUBLESHOOTING

Agenda

- Announcements
- Classroom (25 min)
 - What are Databases?
 - Different Types of Databases
- Break (5 min)
- Warehouse (1.5 hrs)
 - Docks (PC docking stations)

ANNOUNCEMENTS

0

0

Week 16

Announcements for 3/13

Calendar

- Next session: Wednesday, 3/27/2024
- No session: Wednesday, 3/20 No School; Teacher PD
- Week 16-18: Database Management and Troubleshooting Mar. 13th, 27th, & Apr. 3rd

Values

- Respect
- Accountability
- Improvement
- Steadfast
- Encouragement

+

0

+ MODULE 3: ADVANCED + IT CONCEPTS ·

0

Database Management and Troubleshooting

Database Management and Troubleshooting Objectives:

- What are databases?
 - Introduction to databases, explaining their purpose in organizing and managing data.
- Different types of databases
 - Overview of relational and non-relational (NoSQL) databases and their use cases.
- How databases are used
 - Explanation of how databases are used in various applications and industries.
- Solving common database issues
 - Guidance on identifying and addressing common database-related problems.

WHAT ARE DATABASES?

0

0

Databases: Data

- Data Statically raw and unprocessed information
- Types of data in programming languages (JavaScript)
 - BigInt let x = BigInt("123456789012345678901234567890");
 - Number 4, 44.00
 - String "Strawberry Fields"
 - Boolean True, False
 - Symbol built-in object whose constructor returns a symbol
 - Null an assignment value that can be assigned to a variable as a representation of no value
 - Undefined a variable without a value
 - Object const person = {firstName:"John", lastName:"Doe", age:50, eyeColor:"blue"};

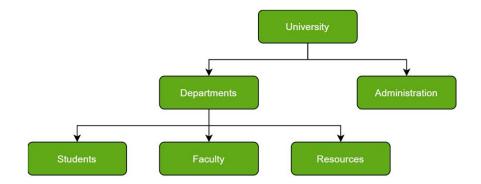
Types of Data in Databases

Numeric

- INT, TINYINT, BIGINT, FLOAT, REAL
- Date and Time
 - DATE, TIME, DATETIME, etc.
- Character and String
 - CHAR, VARCHAR, TEXT, etc.
- Unicode character string
 - NCHAR, NVARCHAR, NTEXT, etc.
- Binary
 - BINARY, VARBINARY, etc.
- Array collection of elements of the same type
 - []

Databases

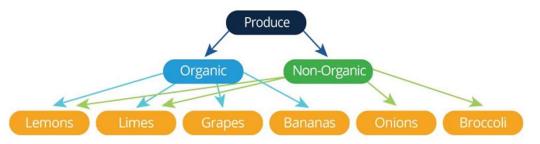
- Database Organized and structured collection of data that is held in a computer system
 - Usually controlled and manipulated by a BDMS (Database Management System)
- Why do we need them?
 - So that we can store large amounts of data in one place and easily retrieve it



Types of Databases

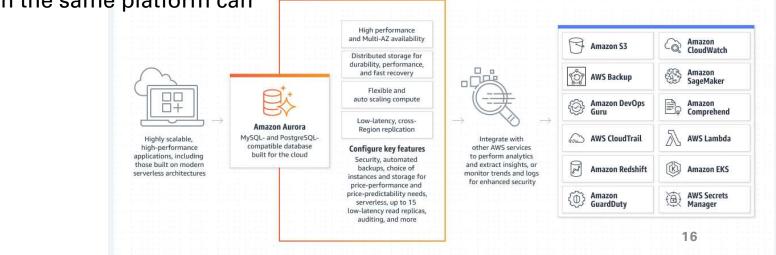
- Hierarchical
- Network
- Object-oriented
- Relational
- Cloud
- Centralized
- NoSQL

Types of Databases: Hierarchical

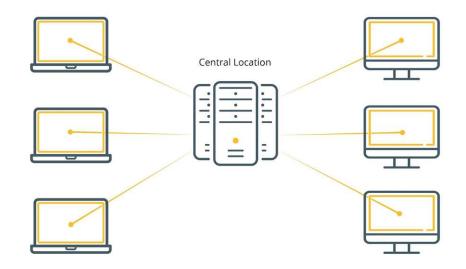

- Data is categorized in ranks/levels
- Categorized based on common point of linkage
- Hierarchies are the domains to elements that form the hierarchies themselves
 - i.e. parent-child relationship

Types of Databases: Network

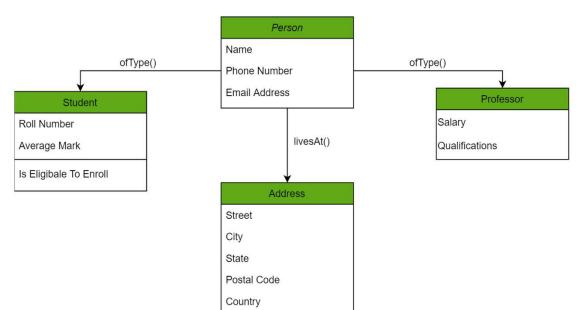
- Multiple member records or files can be linked to multiple owner files
- Allows each record to have multiple parent and multiple child records
 - when visualized, form a web-like structure of networked records
- Allows for more natural modeling of relationships between records or entities vs hierarchical model


Network Database Model

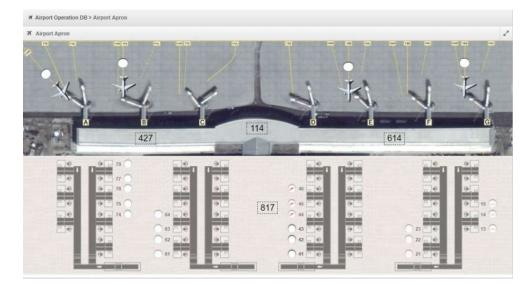
The network model has parent-child relationships, but allows many-to-many relationships.


Types of Databases: Cloud

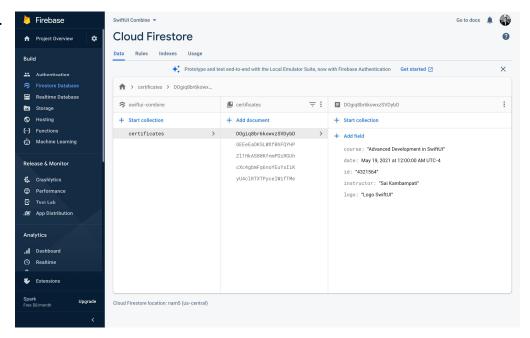
- Data is managed, stored and executed in a virtual environment
- Cloud computing services access the data from the database
- Other apps within the same platform can integrate with it


Types of Databases: Centralized

- Data is centralized, which is stored and maintained at a single location
- More secure when the users wants to retrieve the data from the Centralized Database
- Offers data security, reduced redundancy, consistency
- May be larger with longer response & retrieval time
- Not easy to modify, update and delete


Types of Databases: Object-Oriented

- Information stored in a database is capable of being represented as an object
 - responds as an instance of the database model
- Workload is reduced, as object can be referenced and called without difficulty
 - i.e. different objects are linked using methods such: function database() {person.livesAt() console.log(database) }


Types of Databases: Operational

- Data is stored, managed and updated in real-time operations
- Allows users to easily define, modify, retrieve, and manage data real-time
- Also referred to as OLTP (online transaction processing databases)
- Ex. Warehouse/stock quantities, online webstore, airplane flights

Types of Databases: NoSQL

- Data is non-SQL or non-relational other than tabular relations used in relational databases
- Simpler in terms of design, horizonal scaling to clusters of machines, finer control over availability
- Data structure make some operations faster than SQL

Types of Databases: Relational

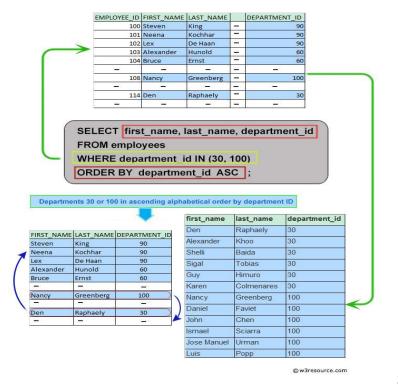
- Every piece of information has a relationship with one another
- All data is tabulated
 - Every row of data is linked with another row using a primary key
 - Every table is linked with another table using a foreign key
- Tables organize the data
- SQL used to interact with the database

 Roll no.
 Student Name
 Marks Awarded

 1
 Raman Triphati
 86

 2
 Rajan Govindan
 94

 3
 Mahesh Nandalal
 94


Key = 94

Marks Awarded	Student Name	Rank	Scholarship
94 94	Rajan Govindan Mahesh Nandlal	17 16	Yes

Section	Student Name	Marks Awarded	Rank
A	Raman Tripathi	86	43
в	Rajan Govindan	94	17
С	Mahesh Nandlal	94	16

Types of Databases: Relational (continued)

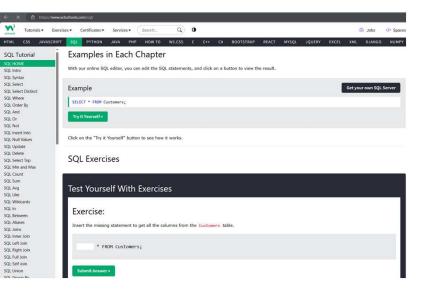
- RDBMS Stores data in a row-based table structure which connects related data elements that can be made between 2 or more tables
- Use SQL Structured Query Language
- Best with non-changing data and when accuracy is important
 - MS Access, SQL Server, MySQL

Types of Databases: Non-relational

- Non-relational stores data in nontabular form
 - No SQL not only SQL
 - Flexible, my commonly be based on document structure
 - Stores huge amount of information

_id: ObjectId("614ae296a7e362dc9335a7a1")
name: "Joanna Smith"
address: "42 Data Street"
dateOfBirth: 1989-02-10T00:00:00.000+00:00
doctorName: "Dr. Nick"
officeName: "Victoria Mill"
< knownIllnesses: Array
0: "Acid Reflux"
< currentMedication: Array
< 0: Object
medicine: "Omeprazole"
dosage (mg): 100</pre>

0

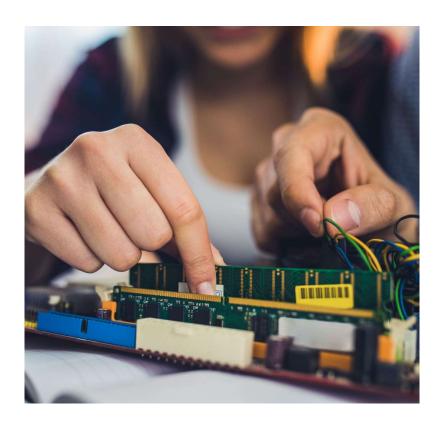

ACTIVITY

0

SQL

Activity: SQL

- 1. Head t:o https://www.w3schools.com/SQI
- Click on green banner: "Start learning SQL now"
- 3. Spend a moment learning and going through the exercises


WAREHOUSE

+

0

Warehouse Activity

- 1:30-3:00pm
- Docks (PC Docking Stations)
 - Sorting/separating
 - Pairing power adaptors
 - Testing and evaluating condition
 - Listing

0

+

0

5 minutes